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This paper compares the performance of the popular adaptive H-refinement (HR) technique for the Finite Element Method (FEM) 

with the Operator-Customized Wavelet Basis (OCWB) FEM in its adaptive version. The latter is somehow an evolution of the HR method 

with the use of second generation wavelet theory, which allows the solution to be decoupled between iterations, decreasing significantly 

the total number of degrees of freedom and consequently, the processing time. Conversely, this procedure increases the algorithm 

complexity, that being the reason why there are such few applications on the subject. Like the HR method, adaptive OCWB can be 

programmed with various strategies. Since the results are shown in terms of processing time on a regular PC, both algorithms have been 

developed with similar structures. 

Index Terms—Adaptive algorithms, adaptive mesh refinement, finite element analysis, wavelet transforms.

I. INTRODUCTION

-REFINEMENT (HR) is a popular technique created in the 

1980s and still used on state of the art Finite Element 

Method (FEM) simulation softwares [1]. It’s an adaptive 

method with qualities such as flexibility, which allow various 

situations to be simulated without significant increase in 

formulation complexity. However, the fact that today’s 

softwares still rely on such longstanding method makes 

research on FEM optimization popular. 

Wavelet theory has been applied to FEM in several situations 

but only with its second generation [2] results became truly 

significant [3] - it made possible the creation of functions fully 

customized to different needs. Named Operator-Customized 

Wavelet Basis (OCWB) [4], in this FEM case, the wavelets are 

custom designed to decouple the stiffness matrix between 

scales, or iterations, factor that decreases significantly the 

computational cost of the algorithm. Another interesting 

characteristic of this method is that the solution is the local error 

itself, which is desirable for adaptive methods. Although the 

properties mentioned here are interesting, the functions are 

completely dependant on the problems operator and geometry, 

factor that increases significantly the complexity of the 

algorithm for more general cases [5]. 

The drawbacks linked with such interesting improvement 

motivates comparison, so the feasibility of theory development 

can be accessed.  

Both algorithms are applied to a 2-D Poisson Equation 

problem in order to validade the work. Since the results are 

given in processing time, it is important to note that the adaptive 

algorithms compared here have similar structures. 

II. ALGORITHMS’ STRUCTURES

The OCWB FEM has as main feature the transformation of 

a hierarchical system of equations – which comes from FEM 

adaptivity – described as  
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where sub-matrices G and C contain interactions of functions 

representing the same and different iterations, respectively. 

Vectors e represent the problem’s excitation and 	  the 

unknowns. Subscripts IN and FI represent initial and final 

iterations, respectively. The aforementioned transformation 

comprises vanishing sub-matrices C. In other words, the system 

becomes decoupled between scales, meaning that in every 

iteration only the degrees of freedom added on the previous step 

will compose the system.  

About the adaptive structure, both algorithms are based on 

element refinement. That is, when critical, an element is split 

into 4 by creating and connecting nodes on all three sides – note 

that triangular meshes are used. The difference between both 

lies on the decision whether or not to refine an element. 

For the OCWB case, the solution on a given node represents 

the error, or detail, on it. So, as proposed in [6], a practical 

scheme would be to use this detail for element refinement 

decision. Although it seems a wise choice, tests proven there is 

a more interesting approach: to use, instead, the wavelet 

coeficients, which is the direct result of the OCWB FEM system 

(see [5]). In that case, the difference between the adaptive and 

non-adaptive solutions is always below the detail threshold. For 

a few reasons, that doesn’t happen on the previous procedure. 

This is an important characteristic because it enables the 

solution to have the desired accuracy. In other words, the error 

resulting from the adaptive algorithm is always below the 

chosen detail threshold. For that reason, the latter is used in this 

paper.  

For the HR case, a simple and popular scheme is used: if the 

integral of the solution’s gradient on the element is bigger than 

a detail threshold, the element is refined for the next iteration. 

H



An important observation is that, since using the same detail 

threshold for both methods won’t result on the same mesh 

refinement, different thresholds were used so the number of 

degrees of freedom added in each iteration were almost 

identical, thus assuring a fairer comparison. The equivalent 

thresholds were obtained after several tests. 

III. RESULTS

The problem simulated in this paper is the simple 2-D 

Poisson equation on square homogeneous medium. As source, 

several impulses (Green’s functions) were distributed along the 

domain. Fig. 1 shows the solution obtained using adaptive 

OCWB with detail threshold equal to 0.03 and 9 iterations. Fig. 

2 shows the resulting meshes in this case and also with HR 

using a detail threshold of 0.00058, which produces a result 

similar in precision. To confirm accuracy similarities, the 

numbers of degrees of freedom added after each iteration for 

various equivalent detail thresholds are shown on Table 1. The 

processing time of both algorithms for those thresholds and for 

different numbers of iterations are shown on Table 2. These 

values were obtained using MATLAB’s sparse matrix 

operations. It is important to note that full memory is 

preallocated for speed gain when assembling a matrix, fact 

which explains lack of memory in some cases. It is later set to 

sparse representation. 

Although the complexity of the OCWB algorithm for more 

general cases increases significantly, the computational gain is 

clear. As shown in Table 2, the processing time of the adaptive 

OCWB is in one situation approximately 30 times faster than 

the HR method, and it is expected to be even faster for cases 

where it is necessary further refinement. 

As already mentioned, OCWB enables the system to be 

decoupled between scales. In other words, in every iteration, 

only the added degrees of freedom compose the system to be 

solved. An example: as shown in Table 1, with DT=0.03 

(0.00058), after the fifth iteration, 2403 degrees of freedom are 

added. The dimension of the matrix to be inverted will be 

2403x2403 on the next step. For the HR case, the system to be 

solved by this iteration will have 16882 – which is the sum of 

all iterations thus far - degrees of freedom.  

Fig. 1. Solution of the proposed problem obtained using adaptive OCWB 

FEM with detail threshold of 0.03 and 9 iterations. 

a)                                                           b) 

Fig. 2. Mesh resulting from the solution of a) Fig. 1 and b) HR with equivalent 

detail threshold and the same number of iterations. 

TABLE I 

NUMBER OF DEGREES OF FREEDOM ADDED AFTER EACH ITERATION

DT=0.05 (0.0016) DT=0.03 (0.00058) DT=0.015 (0.0001) 

IN OCWB HR OCWB HR OCWB HR 

1 175 204 175 204 175 204 

2 735 788 735 792 735 792 

3 2892 2882 2985 3056 3007 3108 

4 1263 1240 11091 9970 12137 11184 

5 963 904 2403 2860 46155 44292 

6 945 823 1620 2220 9072 NM 

7 945 826 1545 2074 6390 NM 

8 945 820 1539 2144 6009 NM 

 IN = Iteration Number. DT = Detail Threshold. NM = No Memory. 

TABLE II 

PROCESSING TIME (S) 

DT=0.05 (0.0016) DT=0.03 (0.00058) DT=0.015 (0.0001) 

NI OCWB HR OCWB HR OCWB HR 

4 0.86 0.96 0.93 0.99 0.95 1.01 

7 1.65 15.54 6.39 88.07 100.12 NM

9 1.97 32.49 7.06 207.86 103.57 NM 

 NI = Number of Iterations. The results were taken on a Core i7 2630QM 

PC with 16 GB RAM. 
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